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Flexural Rigidity of a Liquid Surface 
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The energy of a mass of liquid is evaluated asymptotically in powers of the 
range of the intermolecular potential divided by a typical dimension of the 
liquid. The leading term is the internal energy, proportional to the liquid 
volume. The second term is the energy of surface tension, proportional to the 
area of the liquid surface. The third term is proportional to an integral over this 
surface of the square of the mean curvature of the surface minus one-third of its 
Gaussian curvature. This new term has exactly the form of the bending energy 
of a thin elastic plate. Comparing it with the bending energy yields expressions 
for the flexural rigidity and the Poisson ratio of the liquid surface. This flexural 
rigidity of the surface leads to new terms in the equation of equilibrium of the 
liquid surface, in addition to the usual surface tension terms. 
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1. I N T R O D U C T I O N  

T h e  m a c r o s c o p i c  t h e o r y  o f  surface  t ens ion  is based  u p o n  the  a s s u m p t i o n  

tha t  a l iqu id  surface  behaves  m e c h a n i c a l l y  l ike an  i so t rop i c  e las t ic  m e m -  

b r a n e  wi th  a c o n s t a n t  t ens ion  a. This  t ens ion  mani fes t s  i tself  as a force per  

uni t  l eng th  n o r m a l  to any  cu rve  in the  surface,  o r  equ iva l en t l y  as an  ene rgy  

per  uni t  a r ea  o f  the  surface.  F r o m  e i ther  of  these  cha rac t e r i za t ions ,  the  

effect of  surface  t ens ion  on  the  e q u a t i o n s  of  m o t i o n  o r  on  the e q u a t i o n s  of  

e q u i l i b r i u m  of  a surface  can  be  deduced .  Since  the  w o r k  of  Y o u n g  (1) a n d  

L a p l a c e  (2) in 1805 it has  been  k n o w n  tha t  this m a c r o s c o p i c  t h e o r y  can  be 

de r i ved  f r o m  a m o l e c u l a r  theory .  T h a t  t h e o r y  yields an  express ion  for the  

coeff ic ient  of  surface  t ens ion  a in t e rms  of  i n t e r m o l e c u l a r  po ten t ia l s .  
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From the same molecular theory we shall show that a liquid surface 
also behaves mechanically like an elastic plate with a constant flexural 
rigidity D. This flexural rigidity is manifested in moments which oppose 
bending of the interface, or equivalently in an energy per unit area of 
surface proportional to the square of the mean curvature minus one-third 
of the Gaussian curvature of the surface. The flexural rigidity leads to extra 
terms in the equation governing the motion or the equilibrium of a surface. 
The theory yields an expression for D in terms of the intermolecutar 
potentials and also determines the Poisson ratio of the surface. 

The energy of bending is smaller than the energy associated with 
surface tension by the square of the ratio of the scale length of the 
intermolecular potential to a radius of curvature of the surface. Therefore 
it is relatively unimportant except where the radius of curvature is small, 
as it may be near a contact line, in small droplets, etc. 

2. M O L E C U L A R  T H E O R Y  OF S U R F A C E  E N E R G Y  

Young (1~ and Laplace (2) showed that the surface tension results from 
the different intermolecular forces acting from the two sides on molecules 
at or near an interface. To describe this phenomenon quantitatively it is 
convenient to consider the energy of the substances on the two sides of the 
interface in thermal equilibrium. Let us call them substances 1 and 2, and 
let them occupy regions D1 and D2, respectively, separated by a surface 
S12. 

From a molecular point of view, the distribution of the molecules of 
the two substances is described by ~ (2~  ~'0 t~, Y), the two-particle density of 
molecules of types i and j at x and y, respectively, and the corresponding 
one-particle densities p~(x) and P2(Y)- We assume that far from the 
interface in region Di, Di(x) tends to the constant value pO,, and t,,~(2)(~t -a,, y) 
tends to (p~ yl/e), while for j r  i, &, pg, and pjj all tend to zero. 
Hence g , ( l x -y l / e )  is the radial distribution function of substance i. 

Let e-3q~o.(lx-yl/e) be the intermolecular potential between a 
molecule of substance i at x and a molecule of substance j at y with e 
denoting the range of the potential. Then for i=Aj the total interaction 
energy of i with j is given by 

Vg = e -3 fD fD p~?)(x, y) q)o(lx - yh/e) dx dy (1) 

Here D=D1 w D2. By setting i = j  in (1) we obtain Vii, which is twice the 
energy of interaction of molecules of i with each other. In addition, let there 
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be an external potential Ui(x) of a molecule of slabstance i at position x. 
Then the total external potential energy V~ of substance i is 

p U (x) dx (2) 

Thus E, the total interaction energy of the two substances with themselves 
and with each other, plus the external potential energy, is 

2 1 2 
E = E  '= = (3) 

We shall evaluate E asymptotically for e small compared to the dimen- 
sions of the regions D i. To do so, we use a typical dimension l of D1 as the 
unit of length, and then q)ij(r/~) becomes ~oo[(r/l)(e/l)=~pij(r'/d), where 
r'=r/l  and e'=e/l. Now we omit the primes and (1)-(3) are unchanged, 
but e denotes the ratio of the range of the intermolecular potential to l. 
Thus our goal is to evaluate E(e) for e small. 

In order to obtain the result in the simplest way, without unnecessary 
complications, we shall make an approximation to o(? ) analogous to that r ~ j  

which was suggested by Green (3) for i=j,  and which has been used by 
Berry. (4) It is to write 

pp)(x, y) = pi(x) pj(y) go(Jx-  y[/e) (4a) 

where 

p~(x)={~ ~ for xeD~ 
for x r D i (4b) 

With this approximation V o. and Vi become 

V, = ;D, pO U~(x) dx (6) 

Next we assume that q)o(r/e) tends to zero so rapidly as r increases 
that the first few moments of ~oij exist. We denote the kth  moment  of 
p~176 ) by ~b~., which is given by 

S o o r 2 + k  Pi Pj ~p~(r) go(r) dr (7) 
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Now we rewrite V~i by integrating x over all of R 3 and subtracting the 
integral over R 3 - D~: 

l 

--e-3 fD~fe3 o (p~ y]/~)gi~([x- y[/e)dxdy (8) 

The integral over x in the first term is just the constant 4~b ~ Therefore the 
y integration yields the volume v~ of D~. Thus, (8) becomes 

V~=4rcviO~ f~ fR3_D (p~ p~(lx- y[/e)g,(lx- y[/~)dxdy (9) 

We observe that the integrand in (9) differs appreciably from zero only 
when both x and y are near the interface between D, and R3-D~. 
Therefore we can anticipate that the leading term in the expansion of the 
integral will be proportional to the area of the interface. Similarly the 
leading term in the integral in (5) will be proportional to the area of the 
interface Sij between Di and Dj. 

We have evaluated these integrals asymptotically in powers of e, for e 
small (see the Appendix for some of the details). The simplest results are 
obtained when the interfaces are smooth, without edges or corners, and 
with all their dimensions of order unity. Then from (5) we obtain 

Vij=~(~.fs dA+e3~ 3 + -~(biJfsv(-H2+3) dA O(~4 ) (10) 

Here Sg is the surface separating D~ and Dj, H is the mean curvature of Sij, 
and K is its Gaussian curvature. Similarly from (9) we get 

Vii = 4rcvi~b ~ -- erc(b]i fsii dA - e 3 rc 3 g(biifs,,(-H2+~K) dA+O(e4) (11) 

We now combine the terms associated with the interface Sij, which 
occur in Vii, Vii, and Vjj. This yields the energy associated with S o. Then 
E, the part of E associated with the volumes vi and vj and with Sij, but not 
with other interfaces, is given by 

p~ uiI ) dx + to p~ u, yt dy + + 

(12) 
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Here 7~ is defined by 

7~ = ~b~ + qt~ - 2~b~. (13) 

The third integral on the right side of (12) is proportional to the area of 
S 0, and the coefficient of proportionality is the surface tension a0.. It is 
given by 

(14) 

This result for aij is essentially that of Fowler. (5'6) A more accurate calcula- 
tion of a•, without the approximation (4), was made by Kirkwood and 
Buff  (v) and Buff.(s) 

The last integral on the right-hand side of (12) is proportional to the 
integral of the square of the mean curvature minus one-third of the 
Gaussian curvature. The potential energy of bending of a thin elastic plate 
is given by the similar integral (9) 

f D [ 4 H Z _ 2 ( l _ v ) K ]  dA (15) 
s 2  

Here v is the Poisson ratio of the plate material and D is its flexural 
rigidity: 

2 Eh 3 
D = 3  ( 1 - v  2) (16) 

The plate thickness is h and Young's modulus of the material is E. 
Comparison of the last integral in (12) with (15) shows that they become 
identical if v and D are defined by 

1 
v 3 (17a) 

gg3 
3 + ~bjj- 2r 3) (17b) 

Thus, in addition to behaving like a membrane with respect to stretching, 
a liquid surface or interface also behaves like a thin elastic plate with 
respect to bending. 

To supplement the asymptotic expansion of E given by (12), we shall 
now evaluate E exactly when $12 is a sphere of radius R with substance 1 
inside it and substance 2 outside. We assume the outer boundary of D 2 is 
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far from S12 and we shall not include the energy associated with it. First 
we shall evaluate the potential H(y) at any point y in region D2 due to the 
particles inside the sphere. It is given by 

~ ([yl § R)/e 0 0 2 
Hi:(lyt) = 2= ~(lyl- m/~ Pi Pj r (o~/(r) &:(r) dr 

~l; f ( [y[+R) /e  0 %3 
IY[ (mym-l~)/~ P~P: Pu(r)gu(r)dr 

=(lyl 2 _ R 2) ~(myl + R)/, 
elYl ~(lym m/~ P~176 (18) 

where ]y] >JR is measured from the center of the sphere. This expression 
reduces to that of Rayleigh (m) when lYl = R. 

The energy associated with the sphere of radius R is now given by 

E = �89 + E22 q- 2E12 ] + V, + V 2 (1%) 

where 

I? 
r~ 

Ell = 47zvl (p~ Hil(r)r2dr (19b) 

E=  = 4=v 2 (pO)2 r2022(r) dr - 4= Hza(r)r 2 dr (19c) 

E12 = 4= H12(r)r 2 dr (19d) 
R 

Upon using (18) in (19) and evaluating the integrals, we obtain an exact 
expression for the energy of a sphere of radius R containing substance 1 
surrounded by medium 2. It is 

E =  VI + V2 + 2={vlO~ + v20~ } 

- 2~2R2{qbl~(ZR/e) + ~b212(2R/g)- 2~b~2(2R/g) } 

+ (e3~2/6){~b~l(2R/e) + ~b~2(2R/~)- 2q~2(2R/g) } 

+ 2=(v2 - v, ){~b~ - (>~ } (20) 

where 

~b.5(T) = o o r 2 PiPj +k~pij(r ) g(r) dr (21) 
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If 8 is much smaller than the radius of curvature of the interface, then 
2RIg >> 1 and (20) can be simplified. Then it agrees with our asymptotic 
result (12) when the two radii of curvature are taken equal, so that 
H = I/R, K = 1/R 2, and the surface area of the sphere is 4rrR 2. 

Fowler and Guggenheim (6) used a similar method to calculate the 
energy of a planar liquid-vapor interface. 

3. E Q U A T I O N  FOR T H E  I N T E R F A C E  

At low temperature an equilibrium configuration of the two substances 
considered in Section 2 is a configuration that minimizes the total energy 
E. The configuration is constrained to have a specified mass p~ of 
substance i, for i =  1, 2. Since the p,0 are given constants, it follows that 
volD, ,  the volume of the domain Di, must have the specified value v~. 
Therefore the interface S,j between the domains Di and Dj must be such 
that the energy E is minimized among all pairs of domains with 

vol Di = vi, i = 1, 2 (22) 

To find the interface S U we introduce the Langrange multipliers )"i and 
consider the functional 

2 

E +  ~ 2 , ( v o l D , - v , )  (23) 
1 = 1  

Then we use in (23) the asymptotic expansion (12) for E. Next we vary S o 
in the resulting expression and we obtain the Euler equation 

Pi U i (x )  - pj U j (x )  + 2x(~b ~ - ~b ~  

+ ~rcv~H e3rc 3 - 
+ - ~  70 { A , H +  2H 3 - 2HK} = 2 , -  2j (24) 

Here A s is the surface Laplacian. The variation of (23) with respect to 2i 
yields (22). These equations (22) and (24) for Sij and the 2i must be 
supplemented by suitable boundary conditions where S,j meets a solid 
boundary. 

To derive the boundary conditions, we reconsider (23) without 
expanding the Vi~ and V,> Instead we derive the Euler equation for S 0 
directly from (23) using the exact expression (1) for V,j and (9) for V,. 
In this way we obtain 

822/63/5-6-16 
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pOVi(x ) -- [O Vj (x )  -t- ,s - 3  fD, 

-~-~ fD~ (pO)2 ~Ojj(IX- Yt/e) gig(IX- Yt/e) dy 

(pO)2 r yt/e) g . ( l x -  yl/e) dy 

+~ -3 fD, P~176 -- yt/e) gU(IX -- Yt/e) dy 

- ~  3fD p ~ 1 7 6  j (25) 
z 

This expression holds right up to any solid boundary or other interface 
which intersects S,j. Therefore it can be used to derive boundary conditions 
for (24), such as the contact angle condition, by including in Ui(x) the 
potential due to the solid boundary. 

Away from solid boundaries or intersection points, (25) can be 
simplified by asymptotically evaluating the integrals in it. The expansion of 
the typical integral in (25) is given by 

3 | o o "Ix PiPj q)ot - Y[/e) go (kx -  yl/e) dy :D 

= 2=~b~ + ~e~blH + ~-~ ~3~3{ A ~ H + 2 H 3 - 2 H K } + O ( g 4 ) q ~ o  (26) 

When (26) is used in (25), it yields the result (24) again. This consistency 
is a verification of the correctness of the various asymptotic and variational 
calculations. 

We conclude by noting that the exact equation for the interface S o �9 is 
the integral equation (25). When expanded for e small, at points away from 
solid boundaries and intersections, it yields the differential equation (24). 
By matching the solution of this differential equation to the solution of the 
initegral equation valid near a solid boundary or a line of intersection, 
boundary conditions for the differential equation can be obtained. 

The differential equation (24) contains the usual surface tension term, 
the external potential term, and new terms of order e 3. These new terms 
raise the order of the equation to fourth order, so that additional boundary 
conditions are needed beyond the usual contact angle condition. They can 
be found by higher-order matching of the solutions of the integral equation 
and the differential equation. 

When the surface S o �9 is a sphere of radius R, then H = R  1 and 
K = R  -2, so AsH=O and 2 H 3 - 2 H K = O .  In this case the terms of order 
e 3 in (24) vanish. This example has a bearing on an argument of 
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Rayleigh. (1~ He calculated the pressure in a spherical cavity of arbitrary 
radius R exactly, without assuming that R is small compared to e. His 
procedure was just that which we used in the previous section to evaluate 
the energy of a spherical surface. Then he expanded the pressure for R large 
compared to e, and showed that there was no term of order R 3 in the 
result. He pointed out that a calculation of Fuchs (11) which yields a term 
of order R 3 "does not appear to harmonize" with this result. We see that 
there are such additional terms in (24) for a general surface, but that they 
just cancel out for a spherical surface. Apparently Fuch's terms of order 
R 3 did not vanish in this case. 

4. C O N C L U S I O N  

We have shown that the energy of the surface of a substance or of the 
interface between two substances contains a bending energy contribution. 
Thus the surface or interface has a flexural rigidity. It is determined in 
terms of the intermolecular potentials and the radial distribution functions 
of the substances on one side of the surface or on the two sides of the inter- 
face. The Poisson ratio of the surface or interface is shown to be 1/3. The 
flexural rigidity also leads to an additional term of fourth order in the 
equation of equilibrium of the surface or interface. Therefore another 
boundary condition is needed in addition to the contact angle condition. A 
method for determining that condition from an "exact" integral equation 
for the surface or interface has been proposed. 

A P P E N D I X  

The asymptotic evaluation of the integrals apprearing in Eqs. (5) and 
(26) is simplified by choosing coordinates that lie on the interface. Consider 
a surface X(u, v), where u and v are surface parameters, with the unit 
normal n(u, v). Then any point x near the surface can be parametrized by 
u, v, and t, where 

x = X(u, v) + tn(u, v) (A.1) 

Now Xu, X~, and n are linearly independent vectors with their first 
fundamental form coefficients given by O2) 

E = X u ' X u ,  G = X ~ ' X v ,  F = X u . X  v (A.2) 

We choose u and v such that X, and X v lie in principal directions of 
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curvature. Then they are orthogonal ( F - 0 )  and the Weingarten equations 
reduce to 

n u + k l X u = 0  
(A.3) 

n~+k2Xv=0 

Here kl and k 2 are the principal normal curvatures at (u, v). 
Now we consider the integral appearing in (5), namely 

We write 

Next we let 

(A.4) 

y = X(u', v') + t'n(u', v') (A.6) 

lie in the region Dj below the surface X(u, v) and 

x = X(u, v) + tn(u, v) (A.7) 

lie in the region D i above the surface. Then (A.4) becomes 

V o. = e 3 du dv dt du' dr' dt' 
o o  - o o  - o o  - : 2 o  - c ~  

x Jt~(Ix - y]2/e2) J(u, v, t) J(u', v', t') (A.8) 

Here J(u, v, t) is the Jacobian of the transformation, given by 

J(u, v, t )=  E1-2H(u ,  v)t  + t2K(u, v)](EG) 1/2 (A.9) 

while H =  (kl + k2)/2 and K =  klk2  are the mean and Gaussian curvatures, 
respectively. 

To simplify the integral (A.8), we note that the integrand differs from 
zero only when both x and y are near the interface X(u, v). Therefore we 
introduce the new scaled independent variables z, ~', a l ,  and {72 defined by 

t=e~, t' =sz' ,  u ' = u + 8 ~ l ,  v ' = v + s a 2  (A.10) 

Then we expand all the terms appearing in the integrand in (A.8) in powers 
of 8. This calculation in straightforward, but quite involved, and is easily 
automated using a symbolic manipulation package. We write the result as 

V,j = ell + 8212 + 8313 -+- O(84 ) (A.11 ) 

~(]x__ y]2/s 0 0 =pepj~Oo'(IX-- yl/8)go'(lx-- yl/8) (A.5) 
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For 11 we get 

= dr' ~ dal f  dry 2 ~dr 
--oo --oo o~3 oo 

x EGJf(a~E+ a2G + (r - Tt) 2) (A.12a) 

Upon integrating over a~ and 22, we find that 11 simplifies to 

I~=2~ fs dA f?  rdr f ~ d'C' f o d ' C ~ ~  ) (A.12b) 
0 --o0 

By introducing the new variables a = v - r '  and b = r + r '  we can write 11 
as 

dAfordrf) d a f ~ a ~ ( F 2 J v a 2 )  d b  (a .13)  
sv  

Integrating over both a and b gives the final result 

Ii = ~z r 3 ~ ( r  2) dr dA (A.14) 
13 

In a similar way, after integrating over a~ and 22, we get fo r /2 ,  

12 = -- 4~ dA r dr dr' dr 
~y or:) 

x 2H(z + "c') {2d~(r 2 + (z -- r ')  2) + ~t~ 2 + ('c -- r ')2)r 2 } (A.15) 

The integrand in (A.15) is odd in (r + r ' ) ,  s o / 2 = 0 .  
For  I3, after integrating over a~, a2, r, and r', and integrating by 

parts, we get 

f s o~ { 1 2 7  1 I 3 = n  dAfo rSdr~(r  2) - - ~ H  + ~ K - 1 -  ~ 

x - ~ - ~ +  G~ E~G~ E~a~ E~ (A.16) 
-z-d  + E2c E c  

The last term in the integrand can be reduced to 4K by using Gauss's 
theorema egregium (~2~ relating the Gaussian curvature to E and G, namely, 

1 E v 
K = k l k 2 -  2 ( E G ) m [ ~ - - ~ ( ~ ) +  0-- Gu 
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Then (A.16) becomes 

1 3 = ~  rS•(r2) dr - H 2  + dA (A.18) 

To calculate the integral apprearing in (26), namely 

e-3 fD P~176 CPo([x- y[/e) gij(Ix- yl/e) dy 

= e-3 fo ~ ( [ x -  y[2/•2) dy (A.19) 

the precedure is similar. In surface coordinates the integral becomes 

e 3 fD pOpO<piJ([X-- Y[/e)g~([X-- y]/e) dy 

f ;o = ~ - 3  du o~ dv d t~ ( Ix -y]2 /e2 ) j (u , v , t )  (A.20) 
O(3 c ~  - - 0 0  

Again it is straightforward to expand the integral as before, but we must 
keep one more term. The algebra becomes quite complicated, so we will 
not present it. To simplify the final result, we use the following expression 
for the surface Laplacian: 

1 F~// G ~  ~ c~ { E ~  )]  (A.21) 
A scb _ (EG)1/2 [gu \ (EG)I/2fl + -~V \ (EG)1/2j j 

We also use the compatability conditions satisfied by the parameters u 
and v, 

(n. Xuu)o = HE~ (A.22a) 

(n. Xw) u = HGu (A.22b) 
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